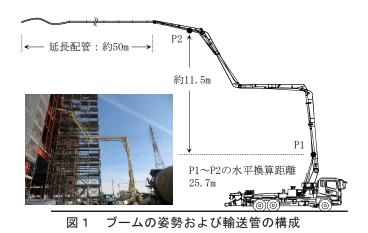
ブーム先端からの延長配管した圧送施工におけるコンクリートの圧送性の測定結果報告

コンクリートポンプ 品質変化 管内圧力 圧送性 圧送施工 ブーム


1. はじめに

コンクリートを安全かつ円滑に圧送するためには、圧 送によるコンクリートの品質変化やコンクリートポンプ および輸送管に加わる圧送圧力(以下、総称してコンク リートの圧送性とする)が重要な要因となることは言う までもない。コンクリートの圧送性は、コンクリート の調合および使用材料や圧送条件等に起因するため、レ ディーミクストコンクリート工場(以下、生コン工場と する)ごとにコンクリートの圧送性が異なることは容易 に推察でき、さらに、筆者らが実施したアンケート調査1) からも生コン工場によって圧送性の差異を感じている技 能者が多いことが明らかとなった。これらを踏まえると、 普段の圧送施工において、圧送によるコンクリートの品 質変化の程度や管内圧力損失を測定することは、データ を蓄積するための大変合理的な方法であり、圧送計画を 立案する上で有用な資料となり得る。

そこで、本報告は、圧送条件および生コン工場ごとに 異なるコンクリートの圧送性を把握することを最終目標 とし、その第一段階として、東海地区コンクリート圧送 有限責任事業組合が実施している安全パトロール(施工 現場における不安全状態や不安全行動を発見し、是正・ 改善を目的とした労働災害防止活動)において測定した コンクリートの品質変化および管内圧力について調査し た結果を報告する。

2. 測定概要

ブームの姿勢および輸送管の構成を図1に示す。対象 とした工事は、圧送高さ約15mでブーム先端から約50m

正会員 〇住井次郎 *1 同

同 中田善久*2

河崎慎吾*1

同 大塚秀三*3

同 宮田敦典*4

の延長配管した圧送工事とした。使用しているコンク リートポンプは、K 車製 (型式: PY135-28-H) のピスト ン式であり、最大長さ24.5mのブームを有する機種で あった。

測定・試験項目は、管内圧力およびコンクリートの圧 送前後の品質変化とし、管内圧力は、1段ブーム(P1) および4段ブーム (P2) の途中に設置した圧力計におい て測定した。また、コンクリートの品質変化として、ス ランプおよび空気量は、荷卸し地点(圧送前)および筒 先(圧送後)から採取した試料について試験し、単位容 積質量は、筒先(圧送後)から採取した試料のみ試験した。 コンクリートの調合は表1に示すとおりであり、水セメ ント比 55%のコンクリートの呼び名 24 15 20 Nであっ た。なお、測定日の外気温は5℃であり、荷卸し地点に おけるコンクリート温度は12℃であった。

3. 測定結果および考察

(1) コンクリートの品質変化

圧送前後のコンクリートの品質変化を表2に示す。ス ランプおよび空気量は、圧送後に低下する傾向を示し、 ポンプ指針²⁾ に示される圧送前後のコンクリートの品質 変化の限度を上回る結果であった。これは、圧送による 影響と経時変化による影響が含まれているものであり、 今回の測定では、荷卸し地点における試験と筒先におけ る試験の時間差が25分程度であった。本調査対象のよ うな、ブーム先端からの延長配管程度の圧送施工の場合 でも、圧送前後のコンクリートの品質変化を考慮する必 要があるといえる。また、単位容積質量は、調合上の値 に比べて大きくなる傾向を示した。これは、圧送により 空気量が減少した影響も含まれるものの、圧送がコンク

表 1 コンクリートの調合

W/C	s/a (%)	空気量 (%)	単位量(kg/m³)						混和剤の休田県
(%)			W	С	S	G_1	G_2	G_3	の使用量 (kg/m³)
55. 0	47. 1	4. 5	174	317	832	381	286	292	3. 17

圧送前後のコンクリートの品質変化

スラン	プ(cm)	空気』	量(%)	単位容積質量(t/m³)		
圧送前	圧送前 圧送後		圧送後	調合上	圧送後	
16. 5	8.5	3. 7	1.8	2. 282	2.390	

Report of Results on Pumpability under Extension Pipeline from Boom Tip

SUMII Jiro, NAKATA Yoshihisa, KAWASAKI Shingo, OTSUKA Shuzo, MIYATA Atsunori

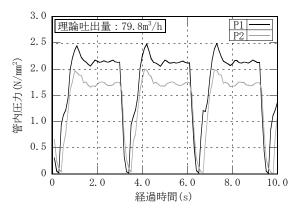
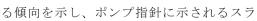


図 2 圧力波形の例

測定結果一覧 表3

計測 No,	ストローク数 (回/分)	理論吐出量 Q _{th} (m³/h)	管内圧力 P1	7 (N/mm²) P2	管内圧力損失* K(N/mm²/m)
1	10. 3	42.8	1. 26	0.94	0.0018
2	12.8	53. 1	1.50	1. 17	0.0022
3	15. 0	62.4	1. 68	1.32	0.0034
4	19. 2	79.8	2. 12	1.70	0.0058
5	21.0	87.3	1. 96	1.49	0.0077

※: P1およびP2の管内圧力差から鉛直方向の圧力(WH×10-3)を差引いて算出


リートの単位容積質量に及ぼす影響は少なからずあるも のと考えられる。

(2)管内圧力

圧力波形の例を図2に示す。ピストン式のポンプを用 いた圧力波形は、ポンプ指針2)で解説されているように、 バルブの切替え時に圧力が瞬間的に大きくなり、その後 圧力が概ね一定となる波形であった。以降、本報告は、 ポンプ指針 2 に従って、吐出量が安定した $5\sim10$ スト ロークの圧力が概ね一定となる値を管内圧力として扱っ ている。

測定結果一覧を表3に示し、理論吐出量と管内圧力損 失の関係を図3に示す。なお、管内圧力損失は、P1 およ びP2の管内圧力差から鉛直方向の圧力(コンクリート の単位容積質量と圧送高さの積)を差引いて算出してい る。理論吐出量は 42.8 ~ 87.9 m³/h の範囲であり、管内 圧力の最大値は、理論吐出量87.9m³/hのときP1で2.17N/ mm²、P2 で 1.70N/mm² となった。また、調査対象とした コンクリートの品質および圧送条件においては、ポンプ 指針²⁾ におけるブームの許容圧送負荷の 4N/mm² 以下を 満足する結果であった。

管内圧力損失は、理論吐出量が大きくなると大きくな る傾向を示し、ポンプ指針に示されるスランプ 15cm の

- *1 東海地区コンクリート圧送有限責任事業組合 *2 日本大学理工学部建築学科 教授,博士(工学)
- *3 ものつくり大学技能工芸学部建設学科 准教授,博士(工学)
- *4 日本大学理工学部建築学科 助手,修士(工学)

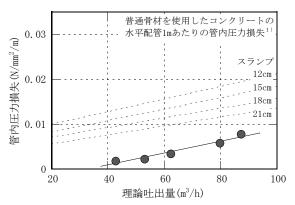


図3 理論吐出量と管内圧力損失の関係

標準値に比べて著しく小さい値であった。この原因は定 かではないが、ブームの姿勢が垂直ではなく、各段ブー ムの使用角度が水平や斜め方向となっていることが影響 しているものと考えられる。この点については、今後、 データを蓄積し、ブームを用いた鉛直方向の圧力分布に ついて検討する必要があるといえる。

4. まとめ

本報告をまとめると以下のとおりである。

- (1) 圧送前後のスランプおよび空気量は低下する傾向を 示した。
- (2) コンクリートの単位容積質量は、圧送の影響を少な からず受ける。
- (3) ブームを用いて鉛直方向に圧送する場合、鉛直方向 の圧力は、コンクリートの単位容積質量と圧送高さ の積よりも小さくなる可能性がある。

本報告は、普段の圧送施工において圧送前後のコンク リートの品質変化および管内圧力を調査したものであ る。当組合は、安全かつ円滑な圧送施工を行うために、 引き続き調査およびデータの蓄積を行い、圧送条件およ び生コン工場ごとのコンクリートの圧送性を検討する予 定である。

謝辞

本調査を実施するにあたり、当組合の巽開発(株)より多大 なるご協力を得ました。ここに付記して感謝の意を表します。

参考文献

- 1) 宮田敦典, 中田善久, 大塚秀三, 荒巻卓見, 河崎慎吾, 住 井次郎: 東海地区の圧送業者を対象としたコンクリートポ ンプ工法における閉塞に関するアンケート調査, 日本建築 学会技術報告集, 第 22 巻, 第 50 号, pp. 1-4, 2016. 2
- 2)日本建築学会:コンクリートポンプ工法施工指針・同解説, 2009.12
- *1 Tokai Area Concrete Pumping LLP
- *2 Prof., Dept. of Architecture, College of Science and Technology, Nihon University, Dr. Eng.
- *3 Assoc.Prof., Dept. of Buliding Technologists, Monotsukuri Institute of Technologists, Dr. Eng.
- *4 Reserch Assistant., Dept. of Architecture, College of Science and Technology, Nihon University, M.Eng.